Does displacement = Δx?
Displacement is the distance and direction from the start point to the end point.
If the motion starts and stops on the x-axis, then the displacement is equal to delta-x toward either the left or the right. But that would be rare and unusual.
What force besides gravity would act on something that had been thrown in the air
The amount of kinetic energy an object has can And is related to the objects And.
he kinetic energy of an object is the energy it has because of its motion. In Newtonian (classical) mechanics, which describes macroscopic objects moving at a small fraction of the speed of light, the kinetic energy ( E) of a massive body in motion can be calculated as half its mass ( m) times the square of its velocity.
A 0.500-kilogram cart traveling to the right on a horizontal, frictionless surface at 2.20 meters per second collides head on with a 0.800-kilogram cart moving to the left at 1.10 meters per second. What is the magnitude ofthe total momentum of the two-cart system after the collision?
Consider the motion towards right as positive and motion towards left as negative.
m₁ = mass of the cart moving to right = 0.500 kg
v₁ = initial velocity before collision of the cart moving towards right = 2.2 m/s
m₂ = mass of cart moving to left = 0.800 kg
v₂ = initial velocity before collision of the cart moving towards left = - 1.1 m/s
initial momentum of the system of carts before the collision is given as
P₁ = m₁ v₁ + m₂ v₂
P₁ = (0.500) (2.2) + (0.800) (- 1.1)
P₁ = 0.22 kgm/s
P₂ = momentum of system of carts after collision
As per conservation of momentum,
Momentum of system of carts after collision = Momentum of system of carts before collision
P₂ = P₁
P₂ = 0.22 kgm/s
Final answer:
The magnitude of the total momentum of the two-cart system after the collision is 0.220 kg*m/s in the opposite direction of the initial velocity.
Explanation:
The total momentum of the two-cart system after the collision can be determined by applying the law of conservation of momentum. According to this law, the total momentum before the collision is equal to the total momentum after the collision.
Before the collision, the momentum of the first cart is calculated by multiplying its mass (0.500 kg) by its velocity (2.20 m/s) and the momentum of the second cart is calculated by multiplying its mass (0.800 kg) by its velocity (-1.10 m/s) since it is moving in the opposite direction. Therefore, the total momentum before the collision is 0.500 kg * 2.20 m/s + 0.800 kg * (-1.10 m/s) = 1.100 kg*m/s - 0.880 kg*m/s = 0.220 kg*m/s.
After the collision, the carts stick together and move as one. Since they have the same velocity, the total momentum after the collision is the sum of the masses multiplied by the common velocity. The total mass of the two carts is 0.500 kg + 0.800 kg = 1.300 kg. Therefore, the total momentum after the collision is 1.300 kg * V, where V is the common velocity. Since the carts move in opposite directions, the common velocity is negative. Setting the total momentum before the collision equal to the total momentum after the collision, we have 0.220 kg*m/s = 1.300 kg * V. Solving for V, we find V = 0.220 kg*m/s / 1.300 kg = -0.169 m/s.
many musical instruments use "boxes" as a part of an instrument. Some examples are acoustic guitars and pianos. From your experience in this lab on building your own musical instrument, write a brief essay on the purpose of these "boxes". Include description of a xylophone and what is uses of for the purpose of the box.
Answer :
Essay on Sound instruments/sound boxes:
Musical instruments also some times called "sound box", because the box modifies the sound of an instrument. It also helps in transfer of sound to the surrounding air.
The box is the open chamber in the body of musical instrument
The sound box responds more strongly to vibrations at certain frequencies created by playing instrument. This phenomena is known as resonance.
The resonance impacts on the tone quality.
For example xylophone, which is a musical instrument with wooden bars. These wooden bars are arranged similar to the piano. under each bar of the xylophone there is a resonator tube, which amplifies the sound.
The 'boxes' or 'bodies' of musical instruments like guitars and pianos serve as resonators, amplifying and enhancing the tone quality of the instrument. In the case of a xylophone, the boxes or tubes beneath the wooden bars act as amplifiers of the initial sound produced.
Explanation:In the field of music, 'boxes' are components of many musical instruments, often called the instrument's 'resonating box' or 'body'. They contribute significantly to the amplification and tone quality of the instrument. For instance, in an acoustic guitar, the sound box amplifies the vibrations of the strings and projects the sound.
When playing a piano, the sound is created by hammers striking strings. These vibrations are then transmitted to the soundboard, basically a large 'box', which increases the surface area that vibrates to project the sound throughout the room.
In relation to a xylophone, the utility of the 'box' is a bit different. In a xylophone, the wooden bars produce sound which is amplified by resonator tubes or boxes below. Instead of acting as the primary sound source like in a guitar or piano, the tubes or boxes under a xylophone amplifies the initial sound created by the strike of the mallet.
Learn more about Boxes in Musical Instruments here:https://brainly.com/question/34611241
#SPJ3
A force is a push or a pull applied to a body or an object. Consider the workout you just participated in. What forces were present on your body as you practiced your running stride or your jump shot? Were the forces helpful or hurtful? Explain using the ideas of external forces, internal forces, tension, and compression.
Answer: One external force was the ground pushing into my foot as I ran. This is a compression force. Gravity is also an external force that is working to pull my body down toward the ground. Since I’m trying to move my body forward, gravity is probably hurting my performance. Since I lean slightly forward when I run, there is a small tension force in my lower back. There is also tension in my shoulders as my arms swing by my sides.
Explanation: EDMENTUM
At an auto race, a member of the pit crew stands beside the track. A car approaches him at 100 m/s and emits a sound at frequency 1100Hz. The air is still and the speed of sound is 340mls. What frequency will the pit crew member hear? A.1560Hz
B.1420Hz
C.1640Hz
D.850Hz
As per the formula of Doppler's effect we know that
[tex]f = f_o\frac{v}{v - v_s}[/tex]
now we know that
v = 340 m/s
[tex]v_s = 100 m/s[/tex]
[tex]f_o = 1100 Hz[/tex]
now we will have
[tex]f = 1100(\frac{340}{340 - 100})[/tex]
[tex]f = 1560 Hz[/tex]
so the frequency heard by the crew will be approx 1560 Hz